
1

Combined Research and Curriculum Development of
Web and Java Based Educational Modules with
Immersive Virtual Environments

Ronald D. Kriz1, Randy T.Levensalor2, and Sanjiv D.Parikh1

1Department of Engineering Science and Mechanics and 2Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061 USA

Key words: Computer-simulation, Java, VRML, CAVE

Abstract: A Java framework is described for creating an interface with legacy code on a
Web browser. This interface was created in the development of modules for
teaching a senior level (I) and first-year graduate level course (II) on the
Mechanical Behavior of Materials. Both courses incorporate the results of
state-of-the-art simulation techniques. The modules make extensive use of
materials available through the Internet. When appropriate, students study
structure property relationships predicted by simulations in an immersive
environment called a CAVEÔ. Simulation results span various length scales,
starting at the atomistic level that use embedded atom method techniques, and
continuing with simulations at the continuum level that use finite element
method techniques. Modules for the second course focus on a scale between
the atomistic and continuum level where mechanical behavior is predicted by
simulations that used a variety of numerical techniques. These modules use
legacy code written by the researchers teaching these classes. Considerable
attention was given to creating a Web-based interface that allows researchers
easily to construct, and students easily to use, interfaces that access legacy
code in an interactive format. Hence, researchers and instructors can focus
more on content development and students can focus more on experimenting

with possible parametric combinations in their solutions.

Ô CAVE is a trademark name of the Electronic Visualization Laboratory of the University of
Illinois.

2 Ronald D. Kriz, Randy T.Levensalor, and Sanjiv D.Parikh

1. WEB-BASED JAVA FRAMEWORK

Although modules are still under development for the second course,
sufficient progress has been made to report on the origin, current status, and
lessons learned in using these modules in the first of the two courses.

1.1 Origin

Modules were developed and distributed on our SUN-VNI Wave-Java
server [1]. Early efforts to create a distributed, Web-based, visual
computing environment were funded by SUN Microsystems, Visual
Numerics, and Virginia TechÕs Advanced Communications and Information
Technology Center (ACITC), and were made possible by the creation of the
Scientific Modeling and Visualization Classroom (SMVC). Modules
discussed here were largely motivated by a student project, ÒEducational
Atomic Models Using PV-Wave and JavaÓ by Arturo Falck, in ESM4714:
Scientific Visual Data Analysis and Multimedia, spring semester 1996 [2].
The purpose of this project was to create a user-friendly Web-based interface
to interact with larger computer simulation models of cracks and dislocations
in crystal lattices by using CGI (Common Gateway Interface). With CGI, an
interactive Web-based form was created that students used to 1) enter
information required by the simulation, 2) compile that information into a
data file, 3) submit this file as a batch job to a remote supercomputer, and
finally to 4) send raw data of the simulation back to the server where images
of data were generated and were returned for viewing to the remote-site
student computer. Unique to this project was the level of industrial
participation by SUN Microsystems and Visual Numerics in the creation of
the Java Web-based interface [3]. Early Java prototypes developed at
Virginia Tech have been replaced with JWave interfaces developed by
Visual Numerics except for the Network Programming Interface Builder
(NPIB), which has replaced the original CGI interface previously described
with the We-based Java framework, but the same functionality has been
maintained. An example of an NPIB form used to calculate wave surface
geometries associated with a fourth order stiffness tensor is shown in Figure
1(a). A more detailed discussion on the current status of NPIB and JWave
follows.

 Java-Based Educational Modules with Virtual Environments 3

1.2 Current Status

1.2.1 Overview

Development of the Java-Web server continued with additional funding
from the NSF Combined Research and Curriculum Development (CRCD)
Program. With NSF funding the server was upgraded to a SUN Sparc10
with 1Gigabyte of memory that could be used to handle larger simulations,
which generated better (i.e., more representative) results for analysis by
students. The earlier version of NPIB, which links students at their
personnel computers to remote-site supercomputers, was created entirely
with Java. Hence this open-source Java-Web server could be implemented
at other universities using standard Java-based technology on affordable
UNIX, NT, or Linux servers. For this project, a SUN Sparc10 Ultra was
selected for development, since it represented an entry-level system that
most departments can afford.

The first course was organized on the Web server with hyperlinks to Web
modules that were divided into lectures, assignments, and examples [4]. The
first course focused on atomistic and continuum mechanics models, and the
second course will focus on models that predict mechanical behavior at the
scale between the atomistic and continuum. Details on module content
development of the first course are available elsewhere [5]. Here we
describe the development of the Web-based Java framework and explain
how the graphical user interface (GUI) design of these interactive modules
facilitated studentsÕ efforts to parametrically study the relationships modeled
and simulated by computer programs written by the researchers and
instructors.

1.2.2 NPIB

The first version of NPIB, version 1.0, which was used in the first class,
required instructors to learn a simple text-based syntax to create the desired
NPIB form layout. Although simple, this process became tedious when the
creation of larger forms was required. We were motivated to eliminate this
syntax in NPIB version 2.0 and to simplify the process so that instructors
could focus on building content. SunÕs JDK 1.1 was chosen for the
development of both versions of NPIB because of its cross-platform and web
browser support. Since the server was also written in Java, it is capable of
running on Windows NT or a more robust UNIX platform. Version 1.0 of
NPIB will be discussed first, followed by a discussion of version 2.0 of

4 Ronald D. Kriz, Randy T.Levensalor, and Sanjiv D.Parikh

NPIB. Both versions were designed so that the instructor can avoid doing
Web-based programming.

A simple example of a short NPIB version 1.0 form and the
corresponding syntax is shown in Figures 1(a) and 1(b). Results are shown
in Figure 2. The syntax shown in Figure 1(b) is simple enough so that the
reader can deduce the syntax simply by observation. This particular problem
illustrates the usefulness of the NPIB form whereby 1) instructors can create
a useful GUI for students without learning Java, and 2) students can submit
multiple parameter lists, and can view, interpret, and compare results in an
easy to understand format. Hence the focus is not on programming but
creating the content and process whereby students can explore and
experiment with a variety of possible solutions.

The NPIB form in Fig 1(a) shows all the necessary information (fourth
order stiffness tensor components and density) required to solve ChristoffelsÕ
equation [6]. ChristoffelsÕ formulation reduces to an eigenvalue problem
whose eigenvalues correspond to three wave surfaces, and whose
eigenvectors correspond to the particle displacement vibration directions
(wave-polarizations) shown here as color gradients mapped onto the wave
surfaces. For materials with lower order symmetry, complex wave surface
geometries can occur: hence, particular attention is given to viewing the
results graphically, either with a VRML Web-based viewer or in the CAVE
when an immersive environment is preferred. At the bottom of the form is a
submit button next to an e-mail address. Instructions at the top of the NPIB
form, not shown here, explain how students can retrieve results at the
specified e-mail address by using either the Web-based built-in e-mail tool
or an e-mail tool of their choice.

For this example, graphical interpretation of the numerical solutions is
particularly important. Exact solutions only exist in principle material
planes [6], and numerical solutions are required when wave surfaces exist
outside these planes. Numerical IMSL subroutines are used to solve for the
eigenvalues and eigenvectors, and PV-Wave is used to generate the
polygonal data sets in VRML format, so that the student can first view the
results in a Web-based VRML viewer and, if necessary, in the CAVE as an
Inventor file. A special format in VRML 1.0 was created, see [7], to allow
the student to view the same file with transparency in both the Web-based
VRML viewer and the CAVE. Here transparency is required to observe how

 VRML is Virtual Reality Modeling Language and Inventor is an SGI graphical format
(public domain); IMSL and PV-Wave are commercial software sold by Visual Numerics
Inc.

 Java-Based Educational Modules with Virtual Environments 5

the QL, QT, and T wave surfaces connect into a single connected wave
surface. For this type of problem, students can explore how small variations
in the stiffnesses, shown in Figure 1(a) as parameters in the NPIB form, can
lead to significant changes in wave surface geometries, as shown in Figure 2.

Version 2.0 of NPIB does not require the instructor to learn any syntax to
create the form layout. The primary difference between versions 2.0 and 1.0
is the addition of a GUI to build the form and to format the output from the
form. Building and modifying forms in version 1.0 was a laborious task.
The new Òwhat you see is what you getÓ (WYSIWYG) builder allows the
user to create and edit the form through direct manipulation of graphical
components. Components are added by selecting the desired component
type from the insert menu and then assigning a unique name, as shown in
Figure 3(a). This name will be used later in formatting the output of the
form. Once a component has been added to the form, dragging it with the
mouse can move it. All component properties can be edited through dialog,
which appears when the component is selected, as shown in Figure 3(b).
The process of editing properties is similar to that in a Java bean box [8].

The format for the output is defined by typing it in the output editor, as
shown in Figure 3(c). Upon submission the output will be formatted exactly
as it appears in the editor. There are key words for declaring files and
linking to components in the form. The file keyword (<file=XXXX.dat>)
denotes a new file which is created on the server when the NPIB form is
submitted. Links to form components (<link=name>) mark where the value
of the named form components is to be inserted into the output file. The
Òlink=nameÓ refers to the name the component was given when it was
created.

Another significant design change is the addition of the ÒForm Interface.Ó
This interface is not necessarily noticeable to the end user. It facilitates the
use of other components with the NPIB forms. Any Java class that
implements the ÒForm InterfaceÓ can be used in the same way as native
components such as text boxes. These new components can implement a
new means of data input or preprocess data before submission.

1.2.3 Jwave

JWave, unlike NPIB, requires developers to have a working knowledge
of Java. Early attempts to create PV-Wave/Java applets (ÒWappletsÓ) were
made collaboratively between Virginia Tech and Visual Numerics Inc. An
early prototype developed at Virginia Tech, called Visualizer [9], had
features similar to the current JWave product but was developed only as a
proof of concept. The interested reader can consult a complete set of
documentation and source code for Visualizer elsewhere [9]. Visualizer no

6 Ronald D. Kriz, Randy T.Levensalor, and Sanjiv D.Parikh

longer works on our current upgraded Java-Wave server because we chose to
discontinue Visualizer upgrades, and to use JWave instead.

Visual Numerics introduced JWave as a means to connect an interactive
Web-based GUI with simple sliders, buttons, dials, etc., to a legacy
programming language called PV-Wave. Most of the calculations and
images generated by PV-Wave legacy code are generated at a server, and
images are sent back to the remote-site client, in this case the studentÕs
computer. Although JWave developers need to have a working knowledge
of Java, the idea here was again to try to minimize the studentsÕ efforts
outside the area of direct relevance to solving the problem at hand. The
student should not need to install any software or learn any particular
programming language to understand the various parts and functions of a
model that is accessed by the JWave Web-based GUI. Figure 4(a) shows a
typical JWave GUI as it would appear on a Web-browser, i.e., Internet
Explorer or Netscape Navigator. This particular interface shows all the
parameters needed to calculate the radial and tangential stress distributions
in a thick-walled cylindrical pressure vessel.

The JWave GUI shown in Figure 4(a) is a necessary but not sufficient
interface for the students to learn about stress distributions in a thick-walled
cylinder. To assist students in the analysis and interpretation of results, a
problem definition with equations and parameters, as shown in Figure 4(b),
must be located near the JWave GUI. Instructors need to design the Web-
page layout and to program it in Java in a meaningful way, much as they
would prepare for a class lecture. Although instructors must have a working
knowledge of Java, JWave provides the necessary communication between
PV-Wave and the Java applet via the JWave server software. This
connection takes the input from the studentÕs Web page, transforms it into
the correct variables, and then sends it to the legacy PV-Wave code for
execution. Once the code finishes execution, the results, variables, and
graphical plots, are returned through the same connection that was
established with the studentÕs Web page. JWave is designed to minimize the
programming efforts of the instructor and take advantage of any legacy code
written in PV-Wave and IMSL.

1.3 Lessons Learned and Future Module Development

The first NSF-CRCD course was taught in the fall semester, 1998, and a
second class will be taught this spring semester, 2000. Both classes are
three-credit hour classes, which meet for one hour three times a week:
Monday, Wednesday, and Friday. Mondays and Wednesdays were reserved
for lectures, and on Fridays students met with instructors in the Scientific

 Java-Based Educational Modules with Virtual Environments 7

Modeling and Visualization Classroom (SMVC), which like the Virginia
Tech CAVE is an ACITC facility.

1.3.1 Things that worked well

Except for occasional server downtimes, the NPIB and JWave interfaces
worked well. Until the final evaluation is completed, conclusions are
speculative. From first impressions, however, it appears that the most
productive time spent using these modules occurred when students and
instructors met in the SMVC on Fridays. Fridays were more like lab
sessions where students could ask questions and try out their ideas with
comments from the professors who also helped interpret the simulation
results. Instructors also received valuable feedback on how the JWave and
NPIB forms were working and what needed to be improved. Friday sessions
also built student confidence for successful completion of their homework
assignments.

1.3.2 Things that need more work:

Although the NPIB form worked well, the ÒbuilderÓ part of the NPIB
was improved with more features but was still not stable enough for
instructors to build their own forms. Consequently, the technical support
team members built all the NPIB version 1.0 forms using a scripting syntax.
When completed, NPIB version 2.0 will allow instructors who are not Java
literate more freedom in building interactive NPIB forms. The NPIB form
only worked on UNIX workstations with Netscape 4.5. It was not until near
the end of the semester that we got the NPIB forms to work on Windows
NT. This was largely due to the way Windows NT handles screen refresh.

1.3.3 Lessons Learned

Java interface development is a difficult, if not impossible, task for most
professors who do not have backgrounds in computer science. These same
professors are also not capable of routine systems administration needed for
configuring and maintaining Java-Web servers. Hence, there must be a
commitment from the department or college to support a courseware server
and to train professors on how to access and use systems such as the NPIB.
Because of limited resources and reluctance to accept new technology,
building and supporting courseware servers has been the most difficult
aspect of this project. The Java-Wave server is now maintained by the
Problem Solving Environment (PSE) group in the Department of Computer
Science [10].

8 Ronald D. Kriz, Randy T.Levensalor, and Sanjiv D.Parikh

In this class, we also discovered that programmers and system
administrators need to work more closely than in years past, when typically
all that was needed was to install a standard language compiler and to have a
user service group for answering any questions. With the advent of the
network, professors and technical support staff can no longer afford to
isolate themselves in the Ònew worldÓ of computing, where popular Web-
based software applications are constantly changing. Successful projects
now require that professors devote more time to learning computing skills
and to working more closely in teams. We also experienced firsthand how
Java needs to be maintained as a standard when early interfaces developed in
NetscapeÕs IFC had to be rewritten. Our experience in team-teaching this
class was rewarding but difficult. More time was spent solving technical
problems than was spent developing course content. We hope the tools
already developed and experience gained in the first class will reverse this
trend in the next class.

To continue the learning experience, witnessed on Fridays in the SMVC,
students need access to the Java-Web server from outside the SMVC.
Although convenient to manage, students should not be required to go a
single-workstation classroom environment. Some universities, because of
security issues and convenience of management, prefer to isolate these
resources from remote access. Such policies are counterproductive when all
students are also required to own their own personal computers and where
professors who are located off-site are expected to create courseware
materials for those students.

1.3.4 Future Developments

Another course will be taught spring semester, 2000 at a first-year
graduate level. For this graduate class, the same material can be taught at a
more comprehensive level, and new simulations of cracks at or near bi-
material interfaces will be modeled both at a continuum and atomistic level
and comparisons made. The Java-Web server will be upgraded to JWave
2.0, better security measures will be implemented without restricting access
to the anonymous ftp site, and the NPIB builder feature will be completed in
version 2.0 so that professors can build their own Java forms. The server
will be upgraded to 1 Gigabyte of memory with 27 Gigabytes of disk space.
Modules in the spring 2000 class will be extensible to other classes taught in
the Engineering Science and Mechanics (ESM) Department. We hope that
this interest will grow to other ESM classes and that the ESM Department
will eventually support their own JWave courseware server.

 Java-Based Educational Modules with Virtual Environments 9

2. ACKNOWLEDGEMENTS

Authors acknowledge the NSF grant ÒCombined Research and
Curriculum Development: Computer Simulation of Material Behavior Ð
From Atomistic to the Continuum LevelÓ (EEC-9700815) and the
foundation grant from SUN Microsystems Inc. and Visual Numerics Inc. to
create the Scientific Modeling and Visualization Classroom.

3. REFERENCES

1. SUN-VNI Wave-Java Web Server: http://www.jwave.vt.edu
2. Scientific Visual Data Analysis and Multimedia, ESM4714:

http://www.sv.vt.edu/classes/ESM4714/ESM4714.html
3. Kriz, R.D. and Farkas, D. ÒUsing Materials Resources on the World Wide Web for

Introductory Materials Science Teaching,Ó J. Materials Education, Vol. 19 No. (1&2), pp.
111-119, (1997).

4. Computer Simulation of Behavior from the Atomistic to the Continuum Level, ESM4984:
http://www.jwave.vt.edu/crcd/

5. Kriz, R.D., Farkas, D., and Batra, R.C., ÒIntegrating Simulation Research into Curriculum
Modules on Mechanical Behavior for Materials: From the Atomistic to the ContinuumÓ, J.
Materials Education, Vol. 21, No. (1&2), pp. 43-52, (1999).

6. Ledbetter, H.M. and Kriz, R.D., ÒElastic-Wave Surfaces in Solids,Ó Physica Status Solidi,
Vol. 114, pp. 475-480, (1982).

7. VRML 1.0 format necessary for viewing in both the CAVE and VRML Web-based viewer:
http://www.sv.vt.edu/classes/vrml/exercise3.html

8. Java Beans: http://java.sun.com/beans/
9. Visualizer Web home page: http://www.jwave.vt.edu/javaprj/viscprj/visualizer/html
10. Problem Solving Environment: http://www.cs.vt.edu/~pse/

10 Ronald D. Kriz, Randy T.Levensalor, and Sanjiv D.Parikh

Figure 1(a) NPIB (Network Programming Interface Builder) version 1.0 form used by
students to study the geometry of stress waves propagating through an anisotropic continuum:

given the density and components of the fourth order stiffness tensor.

 Java-Based Educational Modules with Virtual Environments 11

----------------------- BEGINNING OF FILE ---------------------
f dw2ds.data 0
l 20 10 ----- dw2ds.data ------------------------------
tf 20 60 Material: / 'Calcium Formate' / 1 1 0
tf 20 120 Comment: / 'Orthorhombic Symmetry' / 2 1 0
tf 20 180 Material Density (Kg/(M**3)) / +2.020E+10 / 3
1 0
tf 20 260 Number of independent stiffnesses / 9 / 4 1 0
l 20 300I (indice).... J (indice)....C(I,J)
(N/(M**2))
tf 20 320 / 1 / 5 1 0
tf 130 320 / 1 / 5 2 0
tf 240 320 / +4.920E+10 / 5 3 0
.
.
.
tf 20 640 / 6 / 13 1 0
tf 130 640 / 6 / 13 2 0
tf 240 640 / +2.820E+10 / 13 3 0
tf 20 710 Number of dependent stiffnesses / 3 / 14 1 0
tf 20 750 / 2 / 15 1 0
tf 130 750 / 1 / 15 2 0
tf 240 750 / +2.480E+10 / 15 3 0
tf 20 790 / 3 / 16 1 0
tf 130 790 / 1 / 16 2 0
tf 240 790 / +2.450E+10 / 16 3 0
tf 20 830 / 3 / 17 1 0
tf 130 830 / 2 / 17 2 0
tf 240 830 / +1.450E+10 / 17 3 0
l 20 880 --- Submit information for batch processing --
tf 20 930 Email return address / kriz@viz7.sv.vt.edu / -
1 -1 -1
b 20 970 Submit / wavesurf_orth

-------------------------- END OF FILE -----------------
Figure 1(b) Text file showing syntax that was used to create the NPIB form shown in Figure

1(a).

12 Ronald D. Kriz, Randy T.Levensalor, and Sanjiv D.Parikh

Figure 2. Example of results returned as a navigable VRML viewer embedded in browser
showing a connected T, QT, and QL wave surface corresponding to the density and stiffness

tensor shown in Figure 1(a).

 Java-Based Educational Modules with Virtual Environments 13

Figure 3. NPIB form version 2.0: (a) ÒAWTappÓ final Web-based form as viewed by the

student.

14 Ronald D. Kriz, Randy T.Levensalor, and Sanjiv D.Parikh

Figure 3. NPIB form version 2.0: (b) ÒPropertiesÓ of NPIB components are assigned here.

 Java-Based Educational Modules with Virtual Environments 15

Figure 3. NPIB from version 2.0: (c) ÒOutput EditorÓ controls from format of the output.

16 Ronald D. Kriz, Randy T.Levensalor, and Sanjiv D.Parikh

Figure 4. Thick Walled Cylinder: (a) JWave 2.0 form with window showing graphical results.

 Java-Based Educational Modules with Virtual Environments 17

Figure 4. Thick Walled Cylinder: (b) problem definition.

